Indian Statistical Institute Mid-Semestral Examination 2013-2014 M.Math First Year Complex Analysis

Time : 3 Hours Date : 03.03.2014 Maximum Marks : 100 Instructor : Jaydeb Sarkar

(i) Answer all questions. (ii) $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. (iii) $\mathbb{H} =$ the upper half plane.

Q1. (15 marks) Let f be a non-vanishing continuous function on an open set $U \subseteq \mathbb{C}$ and assume that f^2 is holomorphic in U. Prove that f is holomorphic in U. Compute the derivative of f.

- Q2. (15 marks) Let f be an entire function. True or False (with justification)? (i) if $f(\mathbb{C}) \subseteq \mathbb{C} \setminus \mathbb{D}$, then f is constant.
 - (ii) If $f(\mathbb{C}) \subseteq \mathbb{H}$, then f is constant.
- Q3. (15 marks) Prove that there exists a constant c > 0 such that

$$\sup\{|\frac{1}{z} - p(z)| : |z| = 1\} > c,$$

for all $p \in \mathbb{C}[z]$.

Q4. (15 marks) Let γ be a smooth curve in \mathbb{H} joining -1 + i to 1 + 2i. Find

$$\int_{\gamma} \frac{dz}{1+z}.$$

Q5. (15 marks) Let f be an entire function and f(x, y) = u(x) + iv(y) for all $x, y \in \mathbb{R}$. Prove that f is a polynomial. Compute the degree of f.

Q6. (9+5+6=20 marks) Let f be a non-constant holomorphic function on an open set $U \supseteq \overline{\mathbb{D}}$ and |f(z)| = 1 for all $z \in \mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$. Prove that

- (i) f(z) = 0 for some $z \in \mathbb{D}$.
- (ii) $|\varphi_{\alpha}(z)| = 1$ for all $z \in \mathbb{T}$. Here $\alpha \in \mathbb{D}$ and $\varphi_{\alpha}(z) := \frac{z-\alpha}{1-\bar{\alpha}z}$ and $z \in \mathbb{D}$.
- (ii) For each $\alpha \in \mathbb{D}$, $f(z) = \alpha$ for some $z \in \mathbb{D}$.

Q7. (15 marks) Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be a power series which converges on \mathbb{D} and $f(\mathbb{D}) \subseteq \overline{\mathbb{D}}$. Prove that $|a_n| \leq 1$ for all $n \geq 0$.